Tag Archives: natural design

Biomimesis y niños

Fruto de algunas experiencias con la cooperativa GSD con niños, aquí va este simpático minivideo que me llena de emoción y ternura. Bravo!

Gracias a Rafa García y sus criaturas…

Leave a comment

Filed under Eventos bioinspiradores

Estrategias invernales

 

post1

Reserva Natural de Grollegrund, Suecia (foto del autor M.Quirós)

El invierno que no hemos tenido al menos en el sur de Europa es real. El cambio climático rompe los ciclos que llevan millones de años proporcionando la previsión dinámica a las estaciones. Estos últimos meses han ocurrido riadas, sequías y olas en el litoral norte peninsular de mas de 9 m ocasionando numerosas catástrofes incluyendo la perdida de vidas humanas. A la espera de los últimos registros, es mas que probable que febrero del 2016 sea el mas caluroso y seco de las últimas décadas. A pesar de la ausencia del invierno, hoy homenajeo a las estrategias naturales relativas al mantenimiento del calor (energía) en las duras condiciones externas.

Ya sea en nuestros hogares o en donde trabajamos, el mantenimiento del frío fuera de nuestros espacios es algo que se agradece. Los organismos salvajes, al caer las temperaturas por debajo de cero, mantener el calor puede llegar a ser una cuestión de vida o muerte. En todo el planeta el mantenimiento óptimo de esta temperatura en los edificios no es solo ya una cuestión económica sino también de salud planetaria. El 52% de los humanos vivimos en ciudades y llegaremos al 70% en las próximas décadas. Desde las urbes lideramos las emisiones de gases efecto invernadero (GEI) a la par que una demanda enorme de combustibles fósiles. ¿Qué podemos aprender de la naturaleza para mantenernos calientes de manera más eficiente? El coste energético en la Naturaleza es elevado también pero plantas y animales diseñan multitud de estrategias para regular la temperatura y mantenerse calientes gracias a la piel o las plumas, a estructuras vasculares, la orientación del grupo y muchas otras más. La emulación de estas estrategias en los diseños humanos podría ayudar a encontrar nuevas maneras de mantener calientes y confortables nuestros espacios mientras también conservamos energía sin calentar el planeta. Veamos 3 de estas estrategias.

 

Captura de pantalla 2016-02-18 a la(s) 13.48.35

Esquema de la ocupación, demanda de recursos, emisión de gases EI y consumo energético de las ciudades hoy (M.Quirós)

El murciélago cola de ratón (Tadarida brasiliensis) alterna condiciones de temperaturas extremas mientras permanece en cuevas o volando a grandes alturas para alimentarse. Si tienes apenas 15 g de peso esto supone un problema. El uso de cámaras infrarrojas térmicas, permitió la identificación de puntos calientes a lo largo de los flancos de su cuerpo ausentes por ejemplo en otras especies como Myotis velifer de hábitos diferentes La hipótesis se basa en posibles adaptaciones para la migración, particularmente en la vascularización que gracias a lo observado por transiluminación de las arterias y las venas perpendiculares al cuerpo en la región proximal alar. Estos “radiadores” ayudan a mantener el equilibrio de calor gracias a la ventana térmica con sangre caliente que disipa energía mientras vuelan en condiciones de calor, pero pudiendo desviar el circuito venoso a a cierta distancia durante el vuelo en el aire más frío a gran altura. Analizando el fluido térmico vascular en otras 122 especies de 15 familias de quirópteros aparecieron sólo en especies de la familia aquí descrita. Las potenciales ideas de aplicación podrían ser en la creación de “puntos calientes vascularizados” en edificios, ordenadores, ropa, sacos de dormir, etc. Brillante para tan minúsculo organismo.

bats1

Tadarida brasiliensis; vascularización e imágenes de infrarojo de los “radiadores” y la Tª alcanzada (autor: Jonathan Reichard).

Captura de pantalla 2016-02-22 a la(s) 18.24.29

Transferencia gradual de temperatura del quiróptero según eleva su vuelo.

El multivariado tamaño y forma del pico de las aves no para de sorprendernos. Ya vimos su influencia en el diseño de los trenes de alta velocidad (post enero 2014) o en la protección con los carpinteros (post dic 2013) pero hay mas. Mucho mas. Ya sabemos a través de un estudio, que los picos más grandes tienden a ser encontrados en ambientes calurosos, mientras que las aves en hábitats más fríos han evolucionado picos más pequeños. La investigación además valida una teoría ecológica de 133 años de edad, llamada regla de Allen, que predice que los apéndices endotérmicos de origen animal como las extremidades, orejas y colas son más pequeños en climas fríos con el fin de reducir al mínimo la pérdida de calor. Estudiadas mas de 200 aves de diversos hábitats y morfologías se vio de modo significativo una correlación entre la longitud del pico y la latitud y la temperatura ambiental. Las especies en climas más fríos mostraban tamaños significativamente más cortos. El tucán toco tiene la capacidad de regular la distribución del calor modificando el flujo de sangre, a modo de un radiador térmico transitorio. Los resultados indican que el pico del tucán es, en relación a su tamaño, una de las mayores ventanas térmicas en el reino animal, rivalizando con las orejas de elefante en su capacidad para irradiar el calor del cuerpo.

billsel tamaño del pico indica el hábitat : mas pequeño = + frio; mayor = + calor

Captura de pantalla 2016-02-15 a la(s) 13.54.12

video de 20 sg de termorregulación del tucán

Finalmente no podemos olvidar al gran maestro en la conservación de la energía, Ursus maritimus, el oso polar, el mayor de los depredadores terrestres con mas de 3 m. de longitud y 800 kilos (algunos ejemplares con 1 tonelada). Sus 37ºC corporales pueden soportar los -50ºC con lo que la retención de calor es vital. Para ello desarrolla numerosos diseños aunque hoy solo veremos el externo. El pelaje de los osos es muy denso, con pelos claros que no blancos con varias longitudes que dispersan la luz, creando un efecto albedo elevado. Cada tallo de pelo es por tanto libre de pigmentos y transparente con un núcleo hueco que dispersa y refleja la luz visible, al igual que sucede con el hielo o la nieve. Se les ven más blancos cuando están limpios y bajo un gran ángulo de la luz solar, especialmente justo después del período de muda (primavera-fin del verano). El color amarillo que a veces se observa procede de los aceites acumulados en su dieta de focas. El denso pelaje basal absorbe y trasmite la luz solar al cuerpo. La piel es oscura y bajo la primera capa otra de 12 cm de grosor absorbe los rayos del sol aumentando la temperatura corporal. Estos colosos permanecen invisibles a las frecuencias del infrarrojo pues están tan bien aislados que su superficie está a la misma temperatura que la nieve. Se detectan pues con luz UV.

polar_bear_sketch

características de la cubierta externa del oso polar (modificado de R.S.Publsh.)

Aunque no es del todo cierto: la emisividad del pelaje en el infrarrojo es también casi igual a la de la nieve por lo que podría ayudar a aislar a los osos mediante la reducción del calor que irradian. (Biomimicry Guild). Por supuesto su elevada ingesta de grasa ayuda en este multifuncional diseño. Algunas de estas características podrían aplicarse a aislamientos altamente eficaces para condiciones de frío extremo; ropa de camuflaje para evitar la detección por infrarrojos; material de ropa de ski y deportes extremos de nieve y supervivencia o para calentadores de agua solares más eficientes. Queda mucho aún para su emulación pero vamos avanzando en el conocimiento.

polarpost

pintura del autor(manuelquiros.com); microfotografía del corte transversal de un cabello de oso polar de 0,1 mm de diámetro; pelos de oso polar de 2,5-15 cm (fotos Bill May)

 

1 Comment

Filed under Eventos bioinspiradores

Resiliencia bioinspirada

image

Crustáceo resiliente (imagen vía reciclart.org)

Resiliencia (del latín resilio, -ire ‘saltar hacia atrás’, ‘volver de un salto’, compuesto a su vez por el prefijo re- y el verbo salire ‘saltar’») tiene varios significados según el contexto sea ingeniería, tecnología o psicología (no dejar de leer a Michael Rutter o a Boris Cyrulnik). El término viene una vez más de la ecología y se entiende como la capacidad de un sistema para absorber perturbaciones y reorganizarse mientras experimenta el cambio, conservando aún esencialmente la misma función, estructura, identidad, relaciones, evaluando las opciones de supervivencia. Algunos expertos ya no hablan de diseño sostenible sino de diseño resiliente o estrategias resilientes ante la evidencia de que la sociedad humana ha de adaptarse a los cambios que vienen fruto del desiquilibrio que causamos y que nos va a obligar a sobre-vivir en ese nuevo escenario. Pura evolución.

La vida media de las empresas en el siglo XXI es de unos 12 años. Si comparamos este dato con las empresas que componen el negocio de la naturaleza con la base operacional (misión-visión) de crear condiciones favorables para la vida datan exactamente unos 3.850 millones de años de antigüedad, con procedimientos estándar bien asentados y resilientes además de otras estrategias de innovación relacionados con el inicio y evolución de las condiciones de vida en el planeta. Si buscamos en Google las empresas más antiguas del mundo nos mostrará que la constructora Kongo Gumi de Japón data del 578 (no falta ningún número, si del 578), o Codorníu en 1550 o los seguros de Lloyd en 1688… Poca experiencia si la comparamos con la Vida en la Tierra. Os invito a leer (en inglés) un interesante artículo de mi amigo Tom Mckeag sobre si tu empresa esta preparada o no para los grandes cambios que vienen. Aspectos como la retroalimentación, reorganización dinámica, desacoplamiento, diversidad, modularidad, simplicidad, enjambres etc…son elementos esenciales para hacer que la empresa camine hacia la resiliencia. Todos ellos procedentes de los sistemas naturales y podéis ampliarlos y entender mejor en este interesante libro.

muir

John Muir y sus modelos de web ecológicas

El naturalista-activista escocés John Muir nos mostró ya hace mas de 100 años una de las estrategias de los sistemas vivos para tal supervivencia. La colaboración, la variabilidad y la interdependencia. Cada vértice (foto superior) corresponde a un organismo y los enlaces invisibles con otras especies que le permiten sobrevivir, prosperar incluso si alguna de ellas desapareciera. La representación difiere en gran medida con los que aún hoy día vemos en los libros donde la rana se come al pez que es comida por la garza que a su vez es depredada por un carnívoro mayor…. El ya clásico proyecto Mannahatta (nombre indio que dio el nombre a Manhattan) profundiza en estos aspectos…

La naturaleza no pone fábricas en las afueras de las ciudades, las ubica localmente, cerca de donde se requiere ahorrando energía, costes accesorios, tiempo y otras muchas ineficiencias colaterales y siempre muy presentes su misión-visión. La “valoración” de sus servicios fue calculada (varios trillones de dólares/año) por Robert Constanza y publicada en la prestigiosa Nature  con una infinita rentabilidad para los accionistas. Pero por encima de esa astronómica cantidad, ¿tenemos tecnología para eliminar la contaminación de las ciudades? o ¿para crear agua? y ¿oxígeno?. La respuesta es no. No dejéis de ver los fabulosos minivídeos de la Conservation International (post dic 2014) donde la Naturaleza nos habla y nos pone en el sitio donde nos corresponde. Toda una cura de humildad.

Captura de pantalla 2015-12-24 a la(s) 18.59.34

Los sistemas vivos nos enseña algunos ejemplares únicos, excepcionales que llevan viviendo en la Tierra en algunos casos varios miles de años, sobreviviendo a 5 extinciones masivas. Nos gustan los récords a los humanos y hoy vamos a ver algunas de estas fantásticas y en algunos casos extrañas criaturas que guardan el mejor secreto de la evolución: la longevidad y la manera de sobrevivir a los constantes cambios que la Tierra sufre. Esto se ha de aplicar al mundo empresarial, pues con la crisis global que nos asola nos dan claves para evolucionar para sobrevivir, uno de los Principios de Vida (post nov13) que operan la Vida en la Tierra.  Algunos de los lugares donde viven estos ejemplares nos llevarán a una época más inocente del planeta; algunas crecen apenas unos pocos centímetros cada 100 años y esto pone a la duración de la vida humana en una perspectiva diferente; otros no debemos saber su ubicación para asegurarles su existencia futura. Veamos algunos…

La yareta Azorella yareta parece un musgo tapizante, pero en realidad es un arbusto compuesto por miles de ramas, y cada una contiene racimos de hojitas verdes en las puntas tan densamente empaquetadas que puede soportar nuestro peso. Viven en los Altos Andes o en el desierto de Atacama en Chile, y tiene 3.000 años. La Armillaria es otra singularidad excepcional; es un hongo depredador que crece en círculos o anillos que puede llegar a eliminar determinadas especies de árboles en el bosque, es también conocido como “seta de miel” u “hongo gigantesco” porque resulta ser también uno de los organismos más grandes del mundo. En Oregón, USA un solo organismo ocupa una extensión cercana a 9 Ha!. Los anillos de la muerte, patrones circulares de crecimiento, estrangula lentamente al árbol impidiendo el paso de agua y nutrientes. Esta estrategia le ha funcionado desde hace mas de 2.400 años. ¿Control, equilibrio? hoy no sabemos su función exacta dentro de los ecosistemas pero sin duda su longevidad encierra eficacia y necesidad.

old1

Yareta -imagen walter-rust.com- y Armillaria -imagen taringa.net-

La colonia clonal de los álamos temblones o pandos Populus tremuloides, viven en Utah, literalmente desde hace 80.000 años. Lo que parece un bosque en realidad es un sólo árbol. Se trata de un sistema de raíces gigantes y cada árbol es un tallo que surge de él. Lo que tenemos es un individuo gigante, interconectado, genéticamente idéntico, de sexo masculino y, en teoría, inmortal. Otro árbol clonal es el abeto gran picea, que a los 9.550 años, no es más que un bebé en el bosque de Dalarma, Suecia. Conocido como Old Tjikko, su ubicación se mantiene en secreto para su propia protección. Actualmente el clima se ha vuelto más cálido en la cima de la montaña y la vegetación está cambiando. Así que ni siquiera tenemos que tener contacto directo con estos organismos para provocar un impacto directo y real sobre ellos. Dentro de esta estrategia, existen otros muchos mas como el jomon sugi de la isla de Yakushima (2.180 años), o el liquen geográfico Rhizocarpon geographicum, (3.000 años) en Groenlandia o el Sagole baobab de Limpopo en Sudáfrica con cerca de 2 milenios de vida. Todos ellos llevan el registro de la historia de acontecimientos y fenómenos naturales en sus ramas, y la excepcionalidad de haber sido coetáneos a ellos.TomBean-Pix-1932

colonia clonal de álamos temblones y el Old Tjikko sueco

La siguiente imágen muestra lo que muy bien podría ser el organismo vivo más antiguo del planeta. La actinobacteria siberiana tiene entre 400.000 y 600.000 años. Esta bacteria fue descubierta hace varios años por un equipo de biólogos que esperaban encontrar rastros de vida en otros planetas investigando en una de las zonas más severas del nuestro. Y lo que encontraron, estudiando el permafrost, fue esta bacteria capaz de sintetizar y reparar ADN muy por debajo de cero ºC. Ha estado viviendo y creciendo durante mas de medio millón de años!!. Es también, probablemente, uno de los seres vivientes ancestrales más vulnerables en la actualidad porque, si se derrite el permafrost, no va a sobrevivir. Imaginar que la escritura cuneiforme o la rueda, las invenciones que marcan el nacimiento de la civilización humana, aparecieron apenas hace 5.500 años.

38462-bacteria_525

Muestra de suelo del permafrost con la cianobacteria siberinana datada entre 400-600.000 años en Kolyma Lowlands, Siberia

En este video (13 min. inglés) con Raquel Sussman, inspiradora de este post, podréis ampliar con mas ejemplos otras extraordinarias criaturas y también acceder al fabuloso libro Los organismos vivos mas viejos del planeta una buena opción para regalar estas Navidades.

9780226057507

portada del libro

Feliz Navidad y lo mejor para el 2016!.

Leave a comment

Filed under Eventos bioinspiradores, Exploración personal, Investigación Biologica, Los Genios del lugar, Pensamiento sistemico, Personajes, Recursos

Nepentes y el superdeslizamiento

myn_JorisvanAlphen_20120914-9373

La estrategia de las plantas carnívoras a la hora de obtener nutrientes ausentes en sus ecosistemas marginales mediante la caza de insectos, aves o incluso micromamíferos era negada y considerada anti-natura por el mismísimo Linneo, gran naturalista del XVIII, por considerar a las plantas seres inferiores, proponiendo tales cualidades a poderes divinos casuales.  En cambio Darwin fascinado por ellas, sabia que eran adaptaciones propias de la evolución. En los ecosistemas donde habitan, zonas pantanosas, ciénagas…, al no existir oxígeno, la materia orgánica no se descompone haciendo imposible la obtención de ciertos nutrientes como las proteínas, base para producción del ADN. Del cuarto de millón de plantas conocidas, tan solo unas 630 especies son carnívoras siendo las mas conocidas las plantas jarro, las dróseras, las utricularias o las atrapamoscas solo por citar algunas. Todas han desarrollado fascinantes mecanismos para atraer a “seres superiores” y así poder sobrevivir. Mediante el color rojo (pigmento antocianina) que simula la carne, o el dulce néctar, irresistible para los animales, estos son atraídos. En el caso de Nepentes, la planta ha modificado alguna de sus hojas (video 4 min) hasta convertirla en un jarro cuyo borde o peristoma posee una estructura capaz de deslizar a cualquier ser por pequeño que sea y posea estructura anti-deslizante alguna, para hacerlo caer al interior donde se añadirán otros mecanismos como las paredes y pelos cerosos que imposibilitan la escapatoria o un líquido enzimatico que digiere poco a poco el cuerpo del animal. Estas sustancias internas son capaces de atravesar los duros exoesqueletos de los insectos o el pelaje y plumaje de mamíferos y aves respectivamente.  Resultan espectaculares la combinación de estrategias para un “ser inferior” de modificación de la forma y función (la hoja realiza mal la función fotosintética),  la propia atracción, la captura, la no escapatoria y finalmente la muerte y metabolismo de la presa.

pitcherplant_diagram

Características básicas de algunas plantas carnívoras |varias fuentes de la RED modificado y traducido por el autor|

Hoy solo veremos una de las partes de tan sofisticado mecanismo que ha inspirado a un equipo de investigación de Harvard a la creación de un nuevo material. El borde o peristomo (peri alrededor; stomo boca) posee células anisótropas en las que la solución acuosa se mantiene por tensión superficial como una fina película que hacer resbalar cualquier material que se pose incluyendo a las hormigas que incluso con sus almohadillas ventosas pierden el control a su paso sobre la superficie…Este mini video (1:30 min) lo deja claro!.

Los científicos del Laboratorio de Aizenberg del Instituto Wyss de Ingeniería Inspirada Biológicamente de la universidad de Harvard buscaban materiales naturales omnifóbicos, repelentes de todo. El equipo de Harvard diseñó un material capaz de no mezclar cualquier líquido vertido sobre él, una matriz aleatoria de nanofibras. Han llamado a su producto SLIPS (superficie porosa infusionada con liquido resbaloso), y parece repeler todo: sangre, aceite, incluso el hielo que no puede formarse en su superficie. Con apenas un ángulo de inclinación de 2 grados el nuevo material funciona no sólo como auto-limpiable, sino también como auto-reparable con organización propia. Cuando se hacen cortes en la matriz estructural, el líquido llena rápidamente las secciones y el rendimiento de la superficie resbaladiza continúa sin cesar. Por fín parece haber sustituto al dañino teflón, y promete ser útil para una amplia gama de productos biomédicos, industriales como revestimientos de tuberías, superficies públicas de auto-limpieza y aplicaciones para deshielo. Ya se estudian en otros campos como la óptica, sensores y células solares.

SLIPS-scheme1

representación de SLIPS (premio R+D 100 Magazine 2012)/abajo: izda fotografía bajo microscopio electrónico de barrido (SEM) con glóbulos rojos coagulados, riesgo común y potencialmente mortal asociado con el uso de dispositivos médicos implantados; dcha: portaobjetos de vidrio sumergidos en sangre demostrando la eficacia del recubrimiento TLP-tratada a la derecha.

Este nuevo material supera a lo existente y mejora el conocido el efecto Loto (post 31 oct 2013 y mini-video explicativo) que no funciona bien para líquidos orgánicos o complejos, ni tampoco si la superficie está dañada (por ejemplo, rayada) o sujeto a condiciones extremas, pues las gotas tienden a pegarse o hundirse en las texturas en vez de rodar lejos. El material inspirado en la planta de jarra tiene un enfoque fundamentalmente diferente. En lugar de utilizar, nanoestructuras llenas de aire sin rebabas para repeler el agua, como hemos visto, el borde de la jarra crea una capa resbaladiza y el propio fluido se convierte en la superficie repelente. El propio material hace las funciones!. El efecto es similar a cuando un hidroavión se desliza sobre el agua.

Veamos algunos videos interesantes sobre el asunto:  5min de los propios investigadores; TED (17 min) sobre biomimésis extrema, mas aplicaciones desde Harvard y el enlace a la empresa que ya comercializa el material.

Captura de pantalla 2015-10-15 a la(s) 09.38.30

nombre de la empresa que comercializa las propiedades bioinspiradas en Nepentes

De nuevo la naturaleza nos muestra una super-tecnología que hasta ahora era desconocida, con enormes posibilidades de mejorar la vida y creando valor. El propio Linneo, escéptico entonces, ahora se vería igual de maravillado que nosotros. Pero estas plantas que evolucionaron hace 60-125 millones de años (no hay fósiles claros), son muy sensibles a los cambios ambientales. En concreto los desechos agropecuarios y la propia contaminación de las centrales eléctricas convencionales añaden un exceso importante de compuestos nitrogenados que van a parar a las turberas y otras zonas pantanosas causando un exceso de fertilizantes que acaban “quemando” a la planta. Ojalá estos delicados y fabulosos organismos que llevan millones de años diseñando estrategias de supervivencia, continúen haciéndolo para nuestro propio bien común.

Os dejo un interesante artículo sobre el tema, publicado en el número 3 (español) de la prestigiosa Zygote Quarterly Journal donde colaboro.

Leave a comment

Filed under Design, Eventos bioinspiradores, Exploración personal, Investigación Biologica, Los Genios del lugar, Materiales, Plantas, Recursos

Vivir sobre el agua

animals-walking-water-01La capacidad de caminar sobre la superficie del agua no es exclusiva de un único organismo, hay numerosos insectos y algunas aves que pueden hacerlo, incluso la Biblia otorga este poder a Jesús de Nazaret, aunque esto es otra historia. Existe en cambio un organismo que ha dominado la superficie del agua como ningún otro y la emplea para cazar, comunicarse, reproducirse e incluso defenderse. Otros insectos pueden flotar pero no patinar. Esta capacidad de no hundirse se debe a varios aspectos unidos: la cohesión de las moléculas de agua, el poco peso del animal y la capacidad hidrofóbica de las patas cuyo diámetro es de apenas 150 μm. La adaptación a estos ecosistemas tan adversos y estresantes representan un verdadero reto. Hablo hoy de los comunmente conocidos como insectos zapateros, el mas acuático de los insectos, hemípteros heterópteros de la familia Gerridae (+1.700 especies, 10% marinas) que poseen miles de pequeños pelos cónicos colocados a 27º de inclinación en sus patas recubiertas de una sustancia cerosa, solo visible ante potentes microscopios. La superhidrofobicidad de las patas permitiría superponer uno encima de otro a 15 zapateros sin que la superficie del agua se viera alterada. Además utilizan la comunicación (ripple communication) a través de las ondas superficial solo posible en el 0,3% de los insectos. El diseño es perfecto y los científicos ya buscan posibles aplicaciones a retos que nuestra especie aún no ha resuelto. Una simple búsqueda en la Red revela casi 20.000 referencias con “water strider” y otras 51.000 si tecleo “insecto zapatero”. Mas popular que muchos twiteros. Como es posible este majestuoso diseño?. Antes de Darwin se pensaba que tales características procedían de la divinidad de un ser superior. La evolución, por el contrario, es un proceso al azar, en el que este extenso nicho que representa la superficie del agua, no colonizado por ningún otro organismo, requería de ciertas habilidades o superpoderes (me gusta esta expresión infantil) y las oportunidades no siempre aparecen dos veces.

water-stridersInsectos zapateros en cópula (foto: Rubén D.Caviedes Flickr) y detalles de las patas al microscópio electrónico

Este mini-video muestra como las gotas de agua se van condensando en las patas del insecto ayudándole a mantener la tensión superficial de la lámina del agua. Investigadores de Harvard y Cambridge os revelan en este artículo científico la totalidad del proceso.

 

plan

la selección natural ha logrado que las patas del insecto zapatero funcionaran como oídos diferenciando las diferentes presiones de la superficie del agua.

Aún estamos lejos de las capacidades del insecto zapatero, pero de nuestros estudios muchas aplicaciones se pueden derivar de estas genialidades adaptaciones en una superficie que no sabemos emplear. Algunas han visto la luz en revistas tan importantes como Nature pero también empiezan a aparecer sencillos robots que imitan al insecto y otros que saltan e incluso ejercicios de ciencias para ir maravillando a los mas pequeños… Una vez mas la función concreta de una determinada y única especie viva puede abrir la imaginación para mejorar los diseños y avanzar hacia nuevas oportunidades. De eso trata la biomimésis. Sensores de vibración para la comunicación, nuevas maneras de transporte, nuevos materiales, mecánica de fluídos, robótica, nuevos modos de carga, etc son solo algunas aplicaciones potenciales.

vortex

Maravillosos vórtices bipolares producidos por la propulsión del hemíptero a una V=4cm/sg (foto:D.L.Hu, B.Chang y JMW Bush del MIT)

Los hemípteros representan una joya para los ecosistemas. Por un lado son una importante fuente de alimentación para una enorme variedad de organismos (aves, peces, anfibios, insectos…) aportando por tanto un vital flujo de nutrientes y energía. Pero por otro lado son ávidos cazadores de mosquitos y su control, mas importantes en este sentido que los peces pues a diferencia de estos, se pueden trasladar de una zona a otra. Incluso algunas especies son fuente de proteínas en poblaciones humanas como en Tailandia. Pero sobre todo son bioindicadores que nos informan de la salud de las masas de agua. No están aún amenazados pero los vertidos que generamos sobre los sistemas fluviales no tardarán en indicar cambios en sus poblaciones si no cambia nuestra sensibilidad y educación pro vida-natural. No podemos permitir que esta fuente de bioinspiración desaparezca.

ok

gerridae

Leave a comment

Filed under Design, Eventos bioinspiradores, Exploración personal, Investigación Biologica, Los Genios del lugar, Recursos

El Maestro de las formas

 littleoctolarva de octópodo de David Liittschwager

La sepia, el pulpo y el calamar son los indiscutibles campeones del camuflaje y han ejercido exitosamente su oficio durante los últimos 500 millones de años. Mientras que sus parientes las almejas se quedaron descerebradas, seguras y casi inmóviles, los nautiloides y amonites acorazados comenzaron una osada aventura evolutiva, debido a la presión de los peces, hacia el peligroso mundo de la caza en movimiento, culminando en los vulnerables pero astutos cazadores de cuerpo suave que hoy conocemos. Los cefalópodos (que significa cabeza con patas) son los moluscos más inteligentes, grandes y móviles que presentan unas poderosas y singulares adaptaciones, como sus tentáculos con ventosas que les sirven para explorar, ojos que funcionan como una cámara fotográfica, piel que cambia de forma, color y textura, capacidad de formar nubes de tinta negra para escapar, feroces y picudas mandíbulas, un complejo comportamiento aprendido, y hasta relaciones simbióticas con bacterias bioluminicentes y neurotóxicas. Hay aproximadamente unas 700 especies de cefalópodos  incluyendo las sepias, calamares, pulpos, y el nautilo que viven a lo largo de los mares del mundo. Son considerados como los invertebrados marinos más altamente evolucionados que poseen órganos sensoriales elaborados, grandes cerebros y comportamientos complejos y a menudo son descritos como impresionantes criaturas inteligentes probablemente porque son los primeros invertebrados considerados como «sensibles» y, por lo tanto, el uso de ellos está incluso regulado por una directiva europea. En España nos limitamos a comerlos y sin duda nuestra relación hacia ellos debe cambiar.

evoluc

 evolución de los moluscos de un ancestro común y su filogenia en los cefalópodos (en azul) | anatomía parcial del cerebro de un pulpo

Los pulpos resuelven problemas, aprenden técnicas, curiosean avidamente todo lo que les circunda y llegan a sintetizar un nuevo brazo cuando es cortado. Incluso existe una metodología de enriquecimiento en acuarios para la especie. Nadie sabe con exactitud el número de especies, pero actualmente se conocen mas de 100 pulpos diferentes y mas de 300 del género Octopoda (8 patas). Son animales asombrosos con un cerebro descentralizado! y este punto aislado nos podría conducir a todo un aluvión de ideas para numerosas aplicaciones actuales. En estos invertebrados, el cerebro de halla por todo el cuerpo, desde la cabeza, 3/5 en sus brazos, e incluso la piel con numerosos organos sensoriales incorporados y sensores de luz a modo de millones de cámaras en funcionamiento a tiempo real y en contacto con el entorno que le rodea. El tamaño del cerebro es menor que el de una lagartija pero por el número de neuronas se asemeja mas al de un gato doméstico, hecho sorprendente para un invertebrado emparentado con las almejas o los caracoles. A pesar de su condición de daltónico de modo impecable imitan formas, colores y texturas para pasar inadvertidos y que su supervivencia y comunicación resulten exitosas. Este minivideo os lo muestra así como el que en su momento os mostré desde la sección de videos (nº7) de este mismo blog.

Roger Hanlon, gran experto, nos habla de lo que no sabemos de algunos de los mecanismos de los pulpos (4min.)

Desde siempre no solamente la especie humana, pero muchos otros organismos han necesitado del camuflaje para numerosos propósitos. El mimetismo y la cripsis en nuestra especie ha evolucionado desde algo básico empleando ramas y otros elementos naturales (recordar el vestuario militar) hasta lo que hoy intentamos alcanzar mirando y estudiando algunas especies animales que nos rodean. Tan solo la piel (un solo órgano) de los pulpos (una sola especie) resulta una poderosa herramienta de comunicación, camuflaje… que aún soñamos emular. Hoy nos resulta imposible conocer su funcionamiento completo de lo descrito y por tanto poder imitarla. Las actuales aproximaciones son aún garabatos aunque el camuflaje al que hoy hago mención, denominado activo o adaptativo entendido como el que se adapta, evoluciona rápidamente al entorno que le rodea proporcionando ocultamiento a quien lo ejerce, parece cambiar la percepción. Aún estamos lejos de acércanos a las habilidades del pulpo, pero esto puede cambiar según vemos en un reciente trabajo de las universidades de Houston e Illinois que acaban de desarrollar una hoja flexible y píxelada que detecta luz cambiando incluso los patrones del aspecto externo del blanco al negro y viceversa. Ciertamente lejos aun del pulpo pero sin duda un comienzo…(0:37 sg video) .

octopus

 

algunas características de los cefalópodos con énfasis en la piel

La piel del pulpo como se ilustra en la imagen, resulta ser una malla compleja formada por tres capas de células neurosensitivas pigmentadas que en contracción emiten color mientras que relajadas no lo hacen. Los cromatóforos serían algo así como los pixeles de un Kindle a modo de una tinta de cristal fotónica. El resto de capas pueden reflejar pasivamente la luz ambiental para llegar a igualar el color del entorno. Las posibilidades de innovación que se brindan tras el estudio (no culinario) de los mecanismos y los procesos de una determinada especie animal, como en este caso, son ilimitadas. Es cierto que con el pulpo se requiere de cierta nivel de financiación debido a su sofisticados mecanismos, aunque otras opciones son también posibles.

aplicaciones

algunos diseños bioinspirados en la piel del pulpo

En el ZQJ nº4 recientemente traducido al castellano, la Dra. Tamsin Woolley-Barker nos escribe extensamente de este maestro de las formas con unas fantásticas fotografías. No te lo pierdas.

 octoformasvariedad de formas, colores y tamaños de algunas especies de octopodos (del libro japonés “Cephalopods amazing and beautiful creatures”)

Leave a comment

Filed under Design, Eventos bioinspiradores, Exploración personal, Investigación Biologica, Los Genios del lugar, Materiales, Recursos

Economía Circular

image

La basura es un concepto creado por la humanidad pues somos la única especie planetaria que la produce. El actual sistema basado en la linearidad de sus procesos no puede prologarse. Millones de toneladas de productos tóxicos circulan a diario por tierra, mar, aire y en nuestra propia sangre, giga-cantidades de energía empleadas,  millones de toneladas de valiosos recursos se entierran o incineran en los basureros y millones de personas son explotadas para todos estos procesos. Pero además la mezcla de materiales técnicos y orgánicos hacen imposible la conversión hacia un modelo no lineal y volvemos a empezar. Todo esto resulta ilógico, e ineficaz e injusto nos conduce a la extinción como especie. No tenemos otra opción que ajustarnos a las Leyes naturales como seres orgánicos que somos y emplear aquel que ya funciona y es además sostenible. Solo falta que veamos lo obsoleto del actual e implementemos el nuevo. Hablamos de economía circular.

Captura de pantalla 2013-10-06 a las 12.37.09

modelo de economía circular en la Naturaleza

image

modelo de economía lineal -según Ellen MacArthur Foundation-

 Estas sabias palabras son las que recientemente ha comentado el gran visionario Dr Michael Braunghart que ha visitado Madrid aprovechando la feria Empack. A pesar de que su discurso lleva más de 20 años desde que se juntara con William McDonough para crear el Cradle to Cradle que empuñara Walter Stahel, en la sala apenas 15 personas, escuchábamos atentamente sus sabias palabras…. Este hombre pasara a la Historia del Diseño y la de la próxima revolución industrial. En otros países llena salas de conferencias y su agenda (y su cache!) es relevante. Aquí en cambio solo llenamos campos de fútbol incluso en segunda. Así nos va.

c2c

Dr. M Braungart con V.de Pereda de ToDo design y el autor del blog.

Resulta esperanzador que grandes empresas ya empleen y certifiquen sus productos C2C demostrando que esta filosofía no es solo para publicar libros.

kjh

algunos de los productos certificados C2C

Algunos ejemplos ya han sido tratados en este blog (post) y otros emergen desde hace algún tiempo como el brillante Ecovative que ya produce productos variados con restos vegetales empleándo como “pegamento”el micelio fungico, o el wikicell bioinspirado, y otros en el textil (artículo) o la local, eco-papel de la universidad de Córdoba que envasa sin celulosa de árboles … Recientemente incluso en la impresión 3D con biopolimeros procedentes de la patata, como el solanyl prometen revolucionar esta emergente manera de producir.

circular

el biopolimero de 3D print y productos de ecovative de micelio (top de izda a dcha); algunos de los productos de ecopapel (en medio) y comida sin envase

La fundación Ellen MacArthur muy activa en la economía circular, en su reciente primera edición de su fabuloso dif festival (disruptive innovation festival) declara a voces que la economía esta cambiando y por tanto debemos preguntarnos: ¿que necesitamos saber, experimentar y hacer?. Para contestar a estas y otras preguntas, reunió durante 4 semanas en una ingeniosa plataforma de eventos online-cara a cara, a líderes, emprendedores, empresarios, aprendices, hacedores, pensadores… para catalizar el cambio que hemos de acometer al sistema, para desarrollar y dar a conocer un nuevo y emergente modelo económico. Los que hemos participado, hemos tenido la oportunidad de atender y explorar la nueva economía bajo diferentes prismas rompedores y de enorme calado y futuro. El modelo lineal “extraigo-fabrico-elimimo” (take-make-waste) puede ser sustituido por uno más próspero, regenerativo y circular. El pensamiento sistemico, el internet de las cosas, nuevos materiales y energías, ecodiseño e innovación, información y conocimiento, consumo colaborativo, biomimesis y muchos más han sido expuestos con rigor como una realidad imparable. Personalidades de la altura de Jeremy Rifkin, J.Benyus, W.McDonough, K.Robinson … y otros muchos han participado en esta transición tranquila. No te lo puedes perder.

Captura-de-pantalla-2014-11-25-a-las-18.21.16

mapa de la economía circular –Ellen MacArthur Foundation-

Este minivideo os ayudará a entender los porqués de los cambios que necesitamos.

 

Leave a comment

Filed under Design, Eventos bioinspiradores, Exploración personal, Investigación Biologica, Los Genios del lugar, Materiales, Pensamiento sistemico, Recursos