Category Archives: Materiales

Arte bioinspirado

Aprovecho mi propio blog para en esta ocasión no escribir sobre la biomimesis pero si sobre como la Naturaleza nos inspira también hacia lo espiritual,  hacia lo intangible, hacia el arte para complementar experiencias, sensaciones que no tienen precio pero si un valor biofílico. La sensibilidad o la percepción de la belleza no podemos abandonarlas en nuestro día a día. El próximo miércoles 24 de mayo inauguro en solitario, tras varios años de ausencia en Madrid una nueva exposición.  Esta vez no solo muestro pintura animal salvaje con mi sempiterna obsesión hacia los rinocerontes y otra fauna diversa, sino que también lo haré con unas instalaciones bioinspiradas llenas de delicadeza, intención y poesía.

Son pequeñas muestras con material reciclado de playas, bosques, contenedores… que junto con elementos biológicos en forma de ramas, insectos, líquenes, musgos u hongos encontrados y coleccionados con mimo y a los que mecanizamos sencillas instalaciones led, confieren un momento capturado a la naturaleza. Algunos han de ser observados en la oscuridad para contemplar toda su efímera y frugal belleza capturado en medio milímetro de tejido vegetal de una planta carnívora ya estudiada aquí…(post oct 2015).

tarjeta de invitación a la muestra Re-conexíon_obras bioinspiradas de Manuel Quirós

En otros casos me inspiro en la maravillosa bioluminiscencia para reinterpretarla torpemente si se compara con los originales naturales, para dar un guiño simpático, elegante y misterioso de este fenómeno tan desconocido pero tan empleado por numerosos organismos. No somos los únicos en necesitar la luz!. Este minivideo (1 min.) os da una idea de lo que hablo…

 

Durante el previo de la muestra se grabó este interesante minivideo (3 min) con la maravillosa melodía del gran Paul Winter acompañado con los cantos de las ballenas…


Los abejorros, termes, himenópteros o coleópteros de la muestra son individuos que encuentro ya fallecidos en mis paseos por las zonas naturales o urbanas de mis viajes por Cantabria, los Pirineos, Madrid, Suecia, o el Amazonas. Su pérdida en biomasa es ínfima pero su valor para concienciar de los servicios ecosistémicos que proporcionan es incalculable.

He tenido la enorme fortuna de dar con la Fundación IberoaméricaEuropa que tan amable y altruistamente me ha ofrecido su espacio en el centro de la capital para poder mostrar durante mas de 4 semanas las obras. También quiero agradecer desde aquí a Jose Ángel Garrido por su dedicación y buen hacer en los mecanizados de las piezas. En ambos casos sin su colaboración todo hubiera sido diferente y mas difícil.

Detalle de tejido vegetal de planta carnivora iluminado en la pieza Nephentes solo

Para aquellos que no estéis en Madrid os invito a contemplar otras piezas en este enlace,  así como las pinturas y obra gráfica que también realizo. Mi amigo Hugo Araujo se ha dignado también a incluirme en su gran trabajo sobre biomimesis creativo en  7 vortex del que os enseño una pieza. Finalmente mencionar que durante la muestra expondré en dos ocasiones el proyecto amazónico que trato de desarrollar y que ojalá pueda hablaros de él en próximos posts…

 

Aumakua II_ obra gráfica en caja de luz

Leave a comment

Filed under biomimesis, Design, Eventos bioinspiradores, Exploración personal, Investigación Biologica, Los Genios del lugar, Materiales, Pensamiento sistemico, Plantas, Recursos

Nepentes y el superdeslizamiento

myn_JorisvanAlphen_20120914-9373

La estrategia de las plantas carnívoras a la hora de obtener nutrientes ausentes en sus ecosistemas marginales mediante la caza de insectos, aves o incluso micromamíferos era negada y considerada anti-natura por el mismísimo Linneo, gran naturalista del XVIII, por considerar a las plantas seres inferiores, proponiendo tales cualidades a poderes divinos casuales.  En cambio Darwin fascinado por ellas, sabia que eran adaptaciones propias de la evolución. En los ecosistemas donde habitan, zonas pantanosas, ciénagas…, al no existir oxígeno, la materia orgánica no se descompone haciendo imposible la obtención de ciertos nutrientes como las proteínas, base para producción del ADN. Del cuarto de millón de plantas conocidas, tan solo unas 630 especies son carnívoras siendo las mas conocidas las plantas jarro, las dróseras, las utricularias o las atrapamoscas solo por citar algunas. Todas han desarrollado fascinantes mecanismos para atraer a “seres superiores” y así poder sobrevivir. Mediante el color rojo (pigmento antocianina) que simula la carne, o el dulce néctar, irresistible para los animales, estos son atraídos. En el caso de Nepentes, la planta ha modificado alguna de sus hojas (video 4 min) hasta convertirla en un jarro cuyo borde o peristoma posee una estructura capaz de deslizar a cualquier ser por pequeño que sea y posea estructura anti-deslizante alguna, para hacerlo caer al interior donde se añadirán otros mecanismos como las paredes y pelos cerosos que imposibilitan la escapatoria o un líquido enzimatico que digiere poco a poco el cuerpo del animal. Estas sustancias internas son capaces de atravesar los duros exoesqueletos de los insectos o el pelaje y plumaje de mamíferos y aves respectivamente.  Resultan espectaculares la combinación de estrategias para un “ser inferior” de modificación de la forma y función (la hoja realiza mal la función fotosintética),  la propia atracción, la captura, la no escapatoria y finalmente la muerte y metabolismo de la presa.

pitcherplant_diagram

Características básicas de algunas plantas carnívoras |varias fuentes de la RED modificado y traducido por el autor|

Hoy solo veremos una de las partes de tan sofisticado mecanismo que ha inspirado a un equipo de investigación de Harvard a la creación de un nuevo material. El borde o peristomo (peri alrededor; stomo boca) posee células anisótropas en las que la solución acuosa se mantiene por tensión superficial como una fina película que hacer resbalar cualquier material que se pose incluyendo a las hormigas que incluso con sus almohadillas ventosas pierden el control a su paso sobre la superficie…Este mini video (1:30 min) lo deja claro!.

Los científicos del Laboratorio de Aizenberg del Instituto Wyss de Ingeniería Inspirada Biológicamente de la universidad de Harvard buscaban materiales naturales omnifóbicos, repelentes de todo. El equipo de Harvard diseñó un material capaz de no mezclar cualquier líquido vertido sobre él, una matriz aleatoria de nanofibras. Han llamado a su producto SLIPS (superficie porosa infusionada con liquido resbaloso), y parece repeler todo: sangre, aceite, incluso el hielo que no puede formarse en su superficie. Con apenas un ángulo de inclinación de 2 grados el nuevo material funciona no sólo como auto-limpiable, sino también como auto-reparable con organización propia. Cuando se hacen cortes en la matriz estructural, el líquido llena rápidamente las secciones y el rendimiento de la superficie resbaladiza continúa sin cesar. Por fín parece haber sustituto al dañino teflón, y promete ser útil para una amplia gama de productos biomédicos, industriales como revestimientos de tuberías, superficies públicas de auto-limpieza y aplicaciones para deshielo. Ya se estudian en otros campos como la óptica, sensores y células solares.

SLIPS-scheme1

representación de SLIPS (premio R+D 100 Magazine 2012)/abajo: izda fotografía bajo microscopio electrónico de barrido (SEM) con glóbulos rojos coagulados, riesgo común y potencialmente mortal asociado con el uso de dispositivos médicos implantados; dcha: portaobjetos de vidrio sumergidos en sangre demostrando la eficacia del recubrimiento TLP-tratada a la derecha.

Este nuevo material supera a lo existente y mejora el conocido el efecto Loto (post 31 oct 2013 y mini-video explicativo) que no funciona bien para líquidos orgánicos o complejos, ni tampoco si la superficie está dañada (por ejemplo, rayada) o sujeto a condiciones extremas, pues las gotas tienden a pegarse o hundirse en las texturas en vez de rodar lejos. El material inspirado en la planta de jarra tiene un enfoque fundamentalmente diferente. En lugar de utilizar, nanoestructuras llenas de aire sin rebabas para repeler el agua, como hemos visto, el borde de la jarra crea una capa resbaladiza y el propio fluido se convierte en la superficie repelente. El propio material hace las funciones!. El efecto es similar a cuando un hidroavión se desliza sobre el agua.

Veamos algunos videos interesantes sobre el asunto:  5min de los propios investigadores; TED (17 min) sobre biomimésis extrema, mas aplicaciones desde Harvard y el enlace a la empresa que ya comercializa el material.

Captura de pantalla 2015-10-15 a la(s) 09.38.30

nombre de la empresa que comercializa las propiedades bioinspiradas en Nepentes

De nuevo la naturaleza nos muestra una super-tecnología que hasta ahora era desconocida, con enormes posibilidades de mejorar la vida y creando valor. El propio Linneo, escéptico entonces, ahora se vería igual de maravillado que nosotros. Pero estas plantas que evolucionaron hace 60-125 millones de años (no hay fósiles claros), son muy sensibles a los cambios ambientales. En concreto los desechos agropecuarios y la propia contaminación de las centrales eléctricas convencionales añaden un exceso importante de compuestos nitrogenados que van a parar a las turberas y otras zonas pantanosas causando un exceso de fertilizantes que acaban “quemando” a la planta. Ojalá estos delicados y fabulosos organismos que llevan millones de años diseñando estrategias de supervivencia, continúen haciéndolo para nuestro propio bien común.

Os dejo un interesante artículo sobre el tema, publicado en el número 3 (español) de la prestigiosa Zygote Quarterly Journal donde colaboro.

Leave a comment

Filed under Design, Eventos bioinspiradores, Exploración personal, Investigación Biologica, Los Genios del lugar, Materiales, Plantas, Recursos

El Maestro de las formas

 littleoctolarva de octópodo de David Liittschwager

La sepia, el pulpo y el calamar son los indiscutibles campeones del camuflaje y han ejercido exitosamente su oficio durante los últimos 500 millones de años. Mientras que sus parientes las almejas se quedaron descerebradas, seguras y casi inmóviles, los nautiloides y amonites acorazados comenzaron una osada aventura evolutiva, debido a la presión de los peces, hacia el peligroso mundo de la caza en movimiento, culminando en los vulnerables pero astutos cazadores de cuerpo suave que hoy conocemos. Los cefalópodos (que significa cabeza con patas) son los moluscos más inteligentes, grandes y móviles que presentan unas poderosas y singulares adaptaciones, como sus tentáculos con ventosas que les sirven para explorar, ojos que funcionan como una cámara fotográfica, piel que cambia de forma, color y textura, capacidad de formar nubes de tinta negra para escapar, feroces y picudas mandíbulas, un complejo comportamiento aprendido, y hasta relaciones simbióticas con bacterias bioluminicentes y neurotóxicas. Hay aproximadamente unas 700 especies de cefalópodos  incluyendo las sepias, calamares, pulpos, y el nautilo que viven a lo largo de los mares del mundo. Son considerados como los invertebrados marinos más altamente evolucionados que poseen órganos sensoriales elaborados, grandes cerebros y comportamientos complejos y a menudo son descritos como impresionantes criaturas inteligentes probablemente porque son los primeros invertebrados considerados como «sensibles» y, por lo tanto, el uso de ellos está incluso regulado por una directiva europea. En España nos limitamos a comerlos y sin duda nuestra relación hacia ellos debe cambiar.

evoluc

 evolución de los moluscos de un ancestro común y su filogenia en los cefalópodos (en azul) | anatomía parcial del cerebro de un pulpo

Los pulpos resuelven problemas, aprenden técnicas, curiosean avidamente todo lo que les circunda y llegan a sintetizar un nuevo brazo cuando es cortado. Incluso existe una metodología de enriquecimiento en acuarios para la especie. Nadie sabe con exactitud el número de especies, pero actualmente se conocen mas de 100 pulpos diferentes y mas de 300 del género Octopoda (8 patas). Son animales asombrosos con un cerebro descentralizado! y este punto aislado nos podría conducir a todo un aluvión de ideas para numerosas aplicaciones actuales. En estos invertebrados, el cerebro de halla por todo el cuerpo, desde la cabeza, 3/5 en sus brazos, e incluso la piel con numerosos organos sensoriales incorporados y sensores de luz a modo de millones de cámaras en funcionamiento a tiempo real y en contacto con el entorno que le rodea. El tamaño del cerebro es menor que el de una lagartija pero por el número de neuronas se asemeja mas al de un gato doméstico, hecho sorprendente para un invertebrado emparentado con las almejas o los caracoles. A pesar de su condición de daltónico de modo impecable imitan formas, colores y texturas para pasar inadvertidos y que su supervivencia y comunicación resulten exitosas. Este minivideo os lo muestra así como el que en su momento os mostré desde la sección de videos (nº7) de este mismo blog.

Roger Hanlon, gran experto, nos habla de lo que no sabemos de algunos de los mecanismos de los pulpos (4min.)

Desde siempre no solamente la especie humana, pero muchos otros organismos han necesitado del camuflaje para numerosos propósitos. El mimetismo y la cripsis en nuestra especie ha evolucionado desde algo básico empleando ramas y otros elementos naturales (recordar el vestuario militar) hasta lo que hoy intentamos alcanzar mirando y estudiando algunas especies animales que nos rodean. Tan solo la piel (un solo órgano) de los pulpos (una sola especie) resulta una poderosa herramienta de comunicación, camuflaje… que aún soñamos emular. Hoy nos resulta imposible conocer su funcionamiento completo de lo descrito y por tanto poder imitarla. Las actuales aproximaciones son aún garabatos aunque el camuflaje al que hoy hago mención, denominado activo o adaptativo entendido como el que se adapta, evoluciona rápidamente al entorno que le rodea proporcionando ocultamiento a quien lo ejerce, parece cambiar la percepción. Aún estamos lejos de acércanos a las habilidades del pulpo, pero esto puede cambiar según vemos en un reciente trabajo de las universidades de Houston e Illinois que acaban de desarrollar una hoja flexible y píxelada que detecta luz cambiando incluso los patrones del aspecto externo del blanco al negro y viceversa. Ciertamente lejos aun del pulpo pero sin duda un comienzo…(0:37 sg video) .

octopus

 

algunas características de los cefalópodos con énfasis en la piel

La piel del pulpo como se ilustra en la imagen, resulta ser una malla compleja formada por tres capas de células neurosensitivas pigmentadas que en contracción emiten color mientras que relajadas no lo hacen. Los cromatóforos serían algo así como los pixeles de un Kindle a modo de una tinta de cristal fotónica. El resto de capas pueden reflejar pasivamente la luz ambiental para llegar a igualar el color del entorno. Las posibilidades de innovación que se brindan tras el estudio (no culinario) de los mecanismos y los procesos de una determinada especie animal, como en este caso, son ilimitadas. Es cierto que con el pulpo se requiere de cierta nivel de financiación debido a su sofisticados mecanismos, aunque otras opciones son también posibles.

aplicaciones

algunos diseños bioinspirados en la piel del pulpo

En el ZQJ nº4 recientemente traducido al castellano, la Dra. Tamsin Woolley-Barker nos escribe extensamente de este maestro de las formas con unas fantásticas fotografías. No te lo pierdas.

 octoformasvariedad de formas, colores y tamaños de algunas especies de octopodos (del libro japonés “Cephalopods amazing and beautiful creatures”)

Leave a comment

Filed under Design, Eventos bioinspiradores, Exploración personal, Investigación Biologica, Los Genios del lugar, Materiales, Recursos

Economía Circular

image

La basura es un concepto creado por la humanidad pues somos la única especie planetaria que la produce. El actual sistema basado en la linearidad de sus procesos no puede prologarse. Millones de toneladas de productos tóxicos circulan a diario por tierra, mar, aire y en nuestra propia sangre, giga-cantidades de energía empleadas,  millones de toneladas de valiosos recursos se entierran o incineran en los basureros y millones de personas son explotadas para todos estos procesos. Pero además la mezcla de materiales técnicos y orgánicos hacen imposible la conversión hacia un modelo no lineal y volvemos a empezar. Todo esto resulta ilógico, e ineficaz e injusto nos conduce a la extinción como especie. No tenemos otra opción que ajustarnos a las Leyes naturales como seres orgánicos que somos y emplear aquel que ya funciona y es además sostenible. Solo falta que veamos lo obsoleto del actual e implementemos el nuevo. Hablamos de economía circular.

Captura de pantalla 2013-10-06 a las 12.37.09

modelo de economía circular en la Naturaleza

image

modelo de economía lineal -según Ellen MacArthur Foundation-

 Estas sabias palabras son las que recientemente ha comentado el gran visionario Dr Michael Braunghart que ha visitado Madrid aprovechando la feria Empack. A pesar de que su discurso lleva más de 20 años desde que se juntara con William McDonough para crear el Cradle to Cradle que empuñara Walter Stahel, en la sala apenas 15 personas, escuchábamos atentamente sus sabias palabras…. Este hombre pasara a la Historia del Diseño y la de la próxima revolución industrial. En otros países llena salas de conferencias y su agenda (y su cache!) es relevante. Aquí en cambio solo llenamos campos de fútbol incluso en segunda. Así nos va.

c2c

Dr. M Braungart con V.de Pereda de ToDo design y el autor del blog.

Resulta esperanzador que grandes empresas ya empleen y certifiquen sus productos C2C demostrando que esta filosofía no es solo para publicar libros.

kjh

algunos de los productos certificados C2C

Algunos ejemplos ya han sido tratados en este blog (post) y otros emergen desde hace algún tiempo como el brillante Ecovative que ya produce productos variados con restos vegetales empleándo como “pegamento”el micelio fungico, o el wikicell bioinspirado, y otros en el textil (artículo) o la local, eco-papel de la universidad de Córdoba que envasa sin celulosa de árboles … Recientemente incluso en la impresión 3D con biopolimeros procedentes de la patata, como el solanyl prometen revolucionar esta emergente manera de producir.

circular

el biopolimero de 3D print y productos de ecovative de micelio (top de izda a dcha); algunos de los productos de ecopapel (en medio) y comida sin envase

La fundación Ellen MacArthur muy activa en la economía circular, en su reciente primera edición de su fabuloso dif festival (disruptive innovation festival) declara a voces que la economía esta cambiando y por tanto debemos preguntarnos: ¿que necesitamos saber, experimentar y hacer?. Para contestar a estas y otras preguntas, reunió durante 4 semanas en una ingeniosa plataforma de eventos online-cara a cara, a líderes, emprendedores, empresarios, aprendices, hacedores, pensadores… para catalizar el cambio que hemos de acometer al sistema, para desarrollar y dar a conocer un nuevo y emergente modelo económico. Los que hemos participado, hemos tenido la oportunidad de atender y explorar la nueva economía bajo diferentes prismas rompedores y de enorme calado y futuro. El modelo lineal “extraigo-fabrico-elimimo” (take-make-waste) puede ser sustituido por uno más próspero, regenerativo y circular. El pensamiento sistemico, el internet de las cosas, nuevos materiales y energías, ecodiseño e innovación, información y conocimiento, consumo colaborativo, biomimesis y muchos más han sido expuestos con rigor como una realidad imparable. Personalidades de la altura de Jeremy Rifkin, J.Benyus, W.McDonough, K.Robinson … y otros muchos han participado en esta transición tranquila. No te lo puedes perder.

Captura-de-pantalla-2014-11-25-a-las-18.21.16

mapa de la economía circular –Ellen MacArthur Foundation-

Este minivideo os ayudará a entender los porques de los cambios que necesitamos.

MIDWAY a Message from the Gyre : a short film by Chris Jordan from Midway on Vimeo.

Leave a comment

Filed under Design, Eventos bioinspiradores, Exploración personal, Investigación Biologica, Los Genios del lugar, Materiales, Pensamiento sistemico, Recursos

Magia en los dedos del gecko

Captura-de-pantalla-2014-07-16-a-las-13.20.28
Hay cerca de 3.800 especies de lagartos en la Tierra, algunas pequeñas de escasos milímetros hasta el Varano de Komodo de mas de 3 metros. En la prehistoria algunos superaron los 20 metros y su extinción permitió el paso a los mamíferos y con ello a los humanos… Hace millones de años cuando los predadores terrestres ejercieron su presión selectiva sobre las presas, unos pocos organismos lograron escapar abriendo nuevos nichos donde prosperar. Entre ellos aún nos acompañan los geckos, las arañas o los coleopteros que desarrollaron habilidades y mecanismos extraordinarios sobre la adherencia en multitud de superficies. Hoy vamos a ver tan solo 1 de ellos…

Los geckos y otros reptiles como las salamanquesas por ejemplo, pueden permanecer sin esfuerzo alguno aparente sobre rocas lisas o bajo las ramas de cualquier árbol, moviéndose una y otra vez sin pérdida alguna de adherencia. Además sus dedos permaneces limpios sin restos de adhesivos o de partículas. Como es posible?. Hace más de 2.000 años, Aristóteles comentó la habilidad de los geckos en su capacidad de correr de arriba a abajo e incluso cabeza abajo… Todas las diferentes especies han desarrollado este mecanismo aunque con diseños diferentes como vemos en la siguiente imagen.

Captura-de-pantalla-2014-07-16-a-las-12.10.36

Filogenia y evolución de los dedos del gecko (Gamble y col.)

 Hace ya más de 15 años un joven investigador de UC Berkeley, Kellar Autumn, sintió curiosidad hacia esta estrategia y comenzó sus estudios que animaron a otros y que hoy desemboca en varios cientos de trabajos publicados, varios millones de dólares en investigación y más de 100 patentes de productos y servicios. Mucho conseguido por el simple hecho de ser curioso, no crees?, y demasiado para una “simple” pata pegajosa de un bicho repudiado en numerosos lugares…. La biomimesis empieza por la curiosidad y continúa cuestionando hasta lo mas aparentemente evidente para llegar a las innovaciones que son las que proporcionan desarrollo y mejoras en la vida de todos.  Una vez mas el análisis de las estructuras nanometricas tanto de los lagartos como de los insectos revelan una simple pero inesperada solución. Gracias a la evolución convergente estas microestructuras con forma de espátula les permiten tal adherencia. Descubrimos que la geometría es el tema central de un principio de diseño que les puede separar entre comer o ser comido, mediante la subdivisión de unas pequeñas formas bajo sus dedos. Veamos. Cada escama de la parte inferior de los dedos de las patas poseen unas 150.000 setae del grosor de 0,2 micras (mucho más fino que un pelo) cada uno dividido en unos 2000 filamentos microscópicos que acaban en unas placas en forma de plato. Bien irrigados por el sistema venoso, son capaces de encontrar las mas mínimas irregularidades en las superficies, incluido el propio cristal, llegando a crear mas de 1000 millones de puntos potenciales de adherencia.

Gecko-foot estructura y mecanismo de adhesión de un gecko tipo

 La adhesion entre las espátulas y la superficie de contacto se obtiene gracias a las Fuerzas de Van der Waals (post:Salamanquesas y ciclismo) y llega a ser de una magnitud de 100 nanoNewtons (nN). Las setas pueden ser fácil y rápidamente separadas por el animal de la superficie, curvando los dedos hacia fuera en un movimiento que no nos deja indiferentes. Esta acción además, altera el ángulo de incidencia de los millones de espátulas y la superficie, reduciendo las mencionadas F de van der W. permitiendo al animal desplazarse. La confianza en la adherencia de las energías subatómicas desde la física sin la necesidad de química no requiere de compuestos que deban sintetizar para lograr su cometido, beta-queratina en el caso de los herpetos y quitina en los invertebrados, ahorrando síntesis de materia. Una mosca requiere exactamente de 103 ó 104 setas para mantener su peso. Mediante el incremento de pelos o  vellosidades, los organismos de mayor talla pueden escapar mediante este elegante mecanismo estratégico que en la jerarquía estructural de ingeniería nos enseña una lección: la seguridad en confiar en el sumatorio masivo de fuerzas minúsculas para lograr un resultado macroscópico (2+2=5).

fooot

Densidad de setas adherentes y tamaño en diversos organismos

¿Podemos aprender, a partir de estas ingeniosas soluciones que en la Naturaleza llevan funcionando desde hace millones de años?. Claro!. Las múltiples conexiones posibles en nuestras necesidades no hacen necesario un gran ejercicio de imaginación. Empleamos miles de millones de toneladas anualmente en pegamentos!…y casi todos tóxicos y procedentes del petróleo.  Recientemente durante la Jornada de Biomiesis del Ejército (post) se hablo del proyecto Z-Man de DARPA que ya está empleando el ejercito norteamericano y que demuestra la capacidad de soportar mas de 90 kilos de carga en una persona de 50 k mientras escalaba un muro de cristal de 7 metros de altura… o Geckskin en la que un equipo multidisciplinar de la Univ de Massachusetts y viendo la jerarquía de los materiales (tendones, huesos, post) desarrollan un super-adhesivo de propiedades sorprendentes (minivideo1 y 2) en las que pequeños trozos de apenas 40 cm soportaron un peso de 300 k!. Todo sin química dañina (recordar los cov, cop, formaldehídos, …). Pura tecnología disruptiva.

gecko3
Productos reales y potenciales generados a través de los dedos del gecko…

Para finalizar podéis ver un par de vídeos (nº 15 y 16 de este blog) simplemente geniales realizados por R.Full de la UCBerkeley….

Un reto evolutivo similar también se puede encontrar en organismos marinos como en los mejillones por ejemplo, … pero de ellos hablaremos en otro futuro post… pues por hoy y para ser simplemente lo que el estudio de los dedos de un organismo puede proporcionarnos es suficiente … verdad?.

Leave a comment

Filed under Design, Eventos bioinspiradores, Exploración personal, Investigación Biologica, Los Genios del lugar, Materiales, Recursos

Tensegridad y biomimesis

Dymaxion_2003_animation_small1mapa planetario dimaxión de B.Fuller formando un icosaedro

El término tensegridad, del inglés tensegrity inventado por Buckminster Fuller viene de la contracción de tensional integrity (integridad tensional) y aunque otros también se atribuyen su autoría como Emmerich y Kenneth D. Snelson (wiki), las lecciones de Fuller, calaron y nos mostró que “la evolución da muchos primeros pasos”, y que la Naturaleza siempre ha evolucionado hacia formas de vida que son una solución óptima para las condiciones ambientales en las cuales se desarrollan. Fuller la definió como estructuras con formas estabilizadas por  tensión continua, o ‘integridad tensional’ en lugar de por compresión continua (como sería el caso de un arco de piedra). Tensegridad es una confluencia intrínsecamente no redundante de factores óptimos de eficacia estructural-esfuerzo y todas las estructuras, bien entendidas, desde el sistema solar hasta el átomo, son estructuras de tensegridad. Esto último Bucky (así le llamaban) no llegó a saberlo en vida. Para que lo entendamos bien: es el fundamento de las estructuras mínimas. Es un principio científico que describe la geometría natural en términos de vectores de compresión y tensión; explicando el orden de las estructuras a escala atómica, molecular y cósmica. En otras palabras: son estructuras contra-intuitivas tensadas y sin conexiones rígidas, de peso ligero excepcionalmente robustas y desplegables. ¿Se entiende mejor ahora …?

Centros como el Wyss Institute for Biologically Inspired Engineering o el de Harvard Medical School, han utilizado este principio para explorar las maneras en la que las células se mueven y responden a su entorno. El modelo de tensegridad celular propone que la célula es una estructura en pre-tensión, aunque también es posible encontrar estructuras geodésicas dentro de las células a una menor escala como las cápsides víricas. También ha sido estudiada y aplicada en la arquitectura de los rascacielos de hoy, por ejemplo.

Kurilpa-Bridge-Brisbane-Tensegrity

algunos ejemplos de tensegridad y conceptualización (click para ampliar)

Fuller fue unos de los primeros diseñadores en la búsqueda soluciones sostenibles desde 1930 inventando automóviles de alta eficiencia (coche dimaxión), duchas de bajo flujo, casas eficientes, entre otros. También formó parte de una larga estela de pensadores que reconocían la belleza del diseño procedente de la Naturaleza frente a la baja efeciencia de los diseño humanos comparados con los naturales. Dedicó su vida a la búsqueda de la geometría fundamental de la Naturaleza. Publicó los resultados de su trabajo en dos volúmenes: Sinergética I y II  y gracias a Robert W. Gray podemos leerlos en una web con un detallado indice de los contenidos. Se describen la naturaleza de los sistemas, la forma fundamental del espacio y los principios universales que Bucky afirmaba aplican a todo diseño. La exploración de este material requiere tiempo y esfuerzo, dado el uso preciso que Fuller hace del lenguaje y la profundidad con la que aborda la temática. Podemos resumir que dedicó su vida a investigar el fundamento de las estructuras mínimas; a la aplicación de los principios profundos del diseño con la Naturaleza y a entender el sistema coordinado con la que se combinan materiales en la Naturaleza. Una joya aún por explorar.

bucky cúpula geodésica transportada por el ejercito; estructura de tensegridad; coche dimaxión; probando la resistencia de la geodésica y Bucky (de izda a dcha y arriba a abajo)

Un rasgo distintivo del Dymaxion es que no tiene una dirección que vaya hacia arriba. Fuller dijo frecuentemente que en el universo no hay arriba y abajo ni norte y sur, tan sólo dentro y fuera. Las fuerzas gravitacionales de las estrellas y los planetas crean dentro, que significa “hacia el centro gravitacional” y fuera refiriéndose a “lejos del centro gravitacional”. 

En su búsqueda encontró algunas respuestas como la tensegridad mencionada; los  domos geodésicos (como expresión de tensegridad), que se pueden utilizar para cubrir espacios de manera eficiente y para describir las estructuras de sustancias como el C60 (buckminsterfullereno) entre otros… La forma mínima que encierra un volumen es un tetraedro, que consiste de cuatro puntos. Dos puntos definen una línea; tres puntos un triángulo y cuatro puntos un espacio. Por tanto, cuatro puntos definen el sistema mínimo. Esto es un fundamento de la sinergética: todos los sistemas confinan espacio. En sí, toda estructura está basada en la triangulación. A mayor escala, la triangulación puede ser tan vaga que se disciernen otras figuras. A menor escala, sin embargo, la triangulación es clara. Estructuras como el cubo pueden parecer estables, pero cada una se hace estable por triángulos internos en el material del que están compuestos. Esto se puede confirmar fácilmente construyendo un cubo con lados rígidos y vértices flexibles. Se colapsará, a menos que se le agregue triangulación. El cubo se estabilizará si se le agregan dos tetraedros al interior, y esto representa una visión más realista de la estructura. Aunque este área de la sinergética se ha estudiado poco,  mas estudios de estos principios permitirán muchos nuevos descubrimientos…

Captura de pantalla 2014-06-09 a las 15.33.45

de las bases del tejido (tejer) a las bases de la tensegridad por K.Snelson

Para Fuller todas las formas de vida son sinérgicas y la definió como la condición en la que analizar las partes o subconjuntos de las mismas no ofrece ningún indicio acerca de la funcionalidad de la totalidad. Bucky insistió en que su “geometría energética-sinérgica” era ‘natural’ en el sentido de que ya estaba resuelta y definida, como un principio matemático que la Naturaleza utiliza para darle una ventaja óptima al sistema. Aunque no se adjudicó la invención, si afirmó haber sido el primero en reconocer sus ventajas. La palabra geodésico procede de la navegación y describe la línea más directa y energéticamente más eficiente entre dos puntos sobre la superficie de una esfera. ¿En dónde utiliza la naturaleza las estructuras geodésicas?. Nuestros propios ojos son estructuras geodésicas, un globo común o el huevo de una gallina o los huesos de un pájaro bajo un microscopio electrónico de barrido, verás el ensamblaje familiar de triángulos formando una red con aperturas triangulares lo suficientemente pequeñas para contener moléculas de aire y así como toda una variedad de componentes. La mayoría de los domos geodésicos utilizan una geometría pentagonal. Los pentágonos contienen muchos ejemplos de “la proporción aurea”, el mismo sistema proporcional que se piensa fue utilizado en la construcción del Partenón hace 2.400 años y que se presenta en muchas espirales naturales de Fibonacci (post espirales, vórtices…). Desde tiempos lejanos, esas proporciones han sido profundamente agradables a los ojos y a las mentes de los seres humanos. La abeja busca néctar o polen como alimento recolectando polen en el proceso. Este polen se transfiere a otra flor y se da la polinización. Este proceso beneficia tanto a la abeja como a la flor, representando un claro y bello ejemplo de biomimesis de transmisión de mensajes o comunicación entre sistemas.

Todo esto porqué?…, además de la bioinspiración y maestría de la Naturaleza que se extrae del post, las aplicaciones pueden ser infinitas. Fijaros por ejemplo como la propia NASA ha premiado el diseño de su próxima nave exploratoria “Super Ball Bot” en las superficies de nuevos planetas…… el resto os lo dejo a vuestra propia curiosidad exploratoria.

Podéis ampliar información aquí, en algunos diseños, y mucho mas, y con un libro de regalo de K.Snelson (34 páginas inglés)…. De gran ayuda ha sido el número 1 y 2 de la publicación Zygote Quaterly Journal (ahora en español también!), de la que me congratulo soy editor colaborador.

Leave a comment

Filed under Design, Eventos bioinspiradores, Exploración personal, Investigación Biologica, Los Genios del lugar, Materiales, Metodologia en biomimesis, Pensamiento sistemico, Personajes, Recursos

Jerarquía en biomimesis

image sketch que muestra niveles jerárquicos de una estructura que emplea del 100% del material al 2% aligerandola, por Ed van Hinte y Adrian Beukers en wired.co.uk

Los residuos son un grave problema económico, social y ambiental en el presente siglo que en algunos casos, como el del plástico acompañara incluso a quienes aún no han nacido durante mucho mas tiempo, demasiado. La Naturaleza nos enseña que el residuo es el recurso de otro organismo y que de este modo se autoregula. Más del 90% del material vegetal caído (animal también) es finalmente descompuesto por bacterias, insectos, sus larvas, gusanos y hongos, que rompen el material devolviéndolo como nutrientes básicos al suelo y al ecosistema en los que todos se benefician. Pura economía colaborativa. Sin su presencia no podríamos dar ni un paso por un bosque pues el hedor de la materia putrefacta nos lo impediría, ya que se acumularía hasta cantidades impensables. El proceso bacteriano y fungico es fascinante, la materia orgánica se transforma en N, O2, C, H que nutrirán el suelo y al resto de los componentes del sistema. Una pequeña porción  de bosque puede albergar 200 especies diferentes de hongos. Las bacterias, difícil de cuantificar. El escarabajo pelotero, uno de esos componentes, es un rápido y eficaz reciclador que lleva durante largas distancias bolas de estiércol diseñadas por el mismo para nutrir a sus larvas y de paso al suelo que habita mediante microorganismos incluidos en dichas bolas. No dejéis de ver este maravilloso video de como trabajan estos coleópteros.

imagesección de  suelo con organismos descomponedores 

Podría este eficaz proceso ser transferido a escala humana?. Una de las claves, hay muchas, es el empleo de un tipo de material, el biológico, en los procesos industriales ya que los problemas de la química de la descomposición ya han sido resueltos por la Naturaleza. Así parece que lo ha entendido el proyecto ABLE “Del cartón al caviar” que en sus ya 12 años de andadura, continúan sus éxitos. La base es la siguiente: el cartón se recolecta de numerosos negocios y se transforma la celulosa en material para los lechos de las camas de los caballos, donde acumulara heces y pelo. Este material una vez se descarta, se aloja en tanques de producción de lombrices que compostan los restos. Los excedentes de lombrices se emplean como alimento vivo para la producción de esturiones que se genera como carne y algunos ejemplares maduraran hasta producir caviar. Cuantos más niveles se imbrican en el proceso, más gente podrá emplear toda la energía del proceso ampliando los beneficios y la resiliencia del proceso.

image

Del cartón al caviar -close loop system- |creación propia|

Pocos son aún los negocios que siguen estos procesos (Kalundborg, Ecover en Mallorca, cerveceras,…) entre otras cosas porque muchos de nuestros materiales son biológicamente inertes debido a la introducción durante su manufactura de enlaces altamente energéticos desarrollados a elevadas temperaturas. Los materiales biológicos han evolucionado para poder ser reciclados y sus moléculas estabilizadas mediante enlaces que son suficientemente resistentes para su cometido específico así como a una temperatura y función mecánica determinada. Por tanto las proteínas de la mayoría de los animales empiezan a mostrar signos de rotura a 45C salvo aquellos que viven en las fumarolas o chimeneas oceánicas, que soportan muy altas temperaturas. Esto viene a decir que menos energía se requiere para digerir el material en los procesos digestivos y por tanto más energía disponible para otros aspectos como la búsqueda de alimento o la reproducción. Los materiales biológicos así como los procesos y las estructuras, son jerárquicos, es decir que se ensamblan desde un nivel molecular hacia otro mas complejo (post up·down). En estos casos las únicas fuerzas disponibles son las intermoleculares, que comparadas con los métodos industriales son muchos más débiles y de menor rango. Los ingenieros o arquitectos se pueden plantear la pregunta de porque es así y cual es el papel. Pero esa no es la cuestión pues los organismos emplean la jerarquía como única via posible para alcanzar estructuras más complejas de un modo intrínseco. Por ejemplo la rigidez o la fortaleza nada tiene que ver con el tamaño de sus componentes individualizados, si no mas bien en las cantidades y en las interacciones entre las fibras o los cristales que lo componen. En cambio en la resistencia a la fractura, especialmente en un material rígido, depende de modo relevante en la forma y el tamaño en cuyo caso las relaciones jerárquicas son significativas. Así areas o capas más blandas que el resto pueden afectar en gran medida al fallo de sus propiedades alargando  en el tiempo o evitando posibles futuras fracturas. Esto lo ha estudiado de modo sobresaliente el Dr Claus Matteck y lo muestra por ejemplo en su publicación Thinking Tools After Nature de fácil comprensión.

la foto

algunas imágenes de triángulos de tensión analizados en la Naturaleza por C.Matteck 

Algunas especies de moluscos bivalvos como Haliotis spp.pueden construir sus conchas protectoras en agua de mar, a bajas temperaturas mediante materiales locales abundantes. Estas conchas llegan a ser 3.000 veces más fuertes que sus componentes que a su vez son 200% más fuertes que nuestros materiales cerámicos más duros de alta tecnología. Estos maestros constructores depositan capas elásticas de material orgánico proteíco entre el carbonato de calcio inorgánico rígido tipo “ladrillo y mortero” a una escala nanometrica que le proporciona una resistencia extraordinarias. Esto sin duda marca un cambio de rumbo en la ingeniería, la arquitectura, o el propio diseño así como en la fabricación de nuevos materiales ya que en un futuro las condiciones ambientales marcarán las decisiones y estos se adaptarán, responderán e incluso evolucionarán en función de un ambiente cambiante, en una mezcla de tecnología, física y biología. Pero esta es una proyección humana. En la naturaleza, no hay “arriba” o “abajo”, y no hay jerarquías. Sólo hay redes que anidan dentro de otras redes. Podeis profundizar mas en la materia una vez más con Tom McGeag que nos ilustra en su reciente artículo sobre las estructuras jerárquicas en la arquitectura, los materiales, la medicina y por supuesto el diseño.

Leave a comment

Filed under Design, Eventos bioinspiradores, Exploración personal, Investigación Biologica, Los Genios del lugar, Materiales, Metodologia en biomimesis, Pensamiento sistemico, Recursos